$71^{\text {st }}$ Congresso Brasileiro de Cardiologia

SBC-AHA Session: Best Cardiology Clinical Practices (BPC) Program in Brazil: Bases \& Principles

Managing CVD Risk to Reduce Premature Mortality - Are We There Yet?

Dr. Kathryn Taubert
Geneva, Switzerland

Cardiovascular Disease Scientist
Vice President, American Heart Association
Professor of Physiology
Univ. of Texas Southwestern Medical School

Statement on Relationships with Industry

I have no relationships, relevant or otherwise, with industry.

-- KA Taubert, 24 September, 2016

CVD: Global Burden...Global Risk

CVD = Cardiovascular disease; includes heart diseases and stroke

56 million global deaths in 2012
68\% from NCDs
46% of NCD deaths due to CVD

Distribution of major causes of death globally

Global Atlas on cardiovascular disease prevention and control

From: Global Atlas on cardiovascular prevention and control. 2011. Published by WHO, WHF, WSO. S. Mendis, P. Puska and B. Norrving, eds.

Action at UN and WHO

Recognizing the human suffering, growing burden and socio-economic impact of NCDs in all countries, the UN held a High-Level Meeting on NCDs on Sept. 19-20, 2011.

WHO Global NCD Goal, Targets \& Indicators

25\% Relative Reduction in Premature Mortality from NCDs by 2025

Age-Standardized prevalence of adult population (aged $18+$ years) consuming less than five total servings (400 grams) of fruit and vegtables per day

Age-standardized mean proportion of total energy intake from saturated fatty acids in persons aged $18+$ years.

Tobacco
Smoking 30\%

Drug Therapy to prevent heart attack and stroke 50\%

Target adopted by the World Health Assembly
Modifiable Risk Factors
Additional indicators under Risk Factors
National Systems Response

Global Burden of Cardiovascular Disease

Worldwide Exposures to Cardiovascular Risk Factors and Associated Health Effects Current Knowledge and Data Gaps

Ioanna Tzoulaki, PhD; Paul Elliott, MBBS, PhD; Vasilis Kontis, PhD; Majid Ezzati, PhD

Abstract

Information on exposure to, and health effects of, cardiovascular disease (CVD) risk factors is needed to develop effective strategies to prevent CVD events and deaths. Here, we provide an overview of the data and evidence on worldwide exposures to CVD risk factors and the associated health effects. Global comparative risk assessment studies have estimated that hundreds of thousands or millions of CVD deaths are attributable to established CVD risk factors (high blood pressure and serum cholesterol, smoking, and high blood glucose), high body mass index, harmful alcohol use, some dietary and environmental exposures, and physical inactivity. The established risk factors plus body mass index are collectively responsible for ≈ 9.7 million annual CVD deaths, with high blood pressure accounting for more CVD deaths than any other risk factor. Age-standardized CVD death rates attributable to established risk factors plus high body mass index are lowest in high-income countries, followed by Latin America and the Caribbean; they are highest in the region of central and eastern Europe and central Asia. However, estimates of the health effects of CVD risk factors are highly uncertain because there are insufficient population-based data on exposure to most CVD risk factors and because the magnitudes of their effects on CVDs in observational studies are likely to be biased. We identify directions for research and surveillance to better estimate the effects of CVD risk factors and policy options for reducing CVD burden by modifying preventable risk factors. (Circulation. 2016;133:2314-2333. DOI: 10.1161/ CIRCULATIONAHA.115.008718.)

Figure 1. Schematic diagram of the proposed determinants of and risk factors For CV diseases.

Clinical cardiovascular disease: ischemic heart disease, stroke, heart failure, peripheral arterial disease, rheumatic heart disease

Lifestyle Interventions - still important

AHA/ACC Prevention Guideline

OPEN

2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation, American Pharmacists Association, American Society for Nutrition, American Society for Preventive Cardiology, American Society of Hypertension, Association of Black Cardiologists, National Lipid Association, Preventive Cardiovascular Nurses Association, and WomenHeart: The National Coalition for Women With Heart Disease

EXPERT WORK GROUP MEMBERS

Robert H. Eckel, MD, FAHA, Co-Chair; John M. Jakicic, PhD, Co-Chair; Jamy D. Ard, MD; Janet M. de Jesus, MS, RD*; Nancy Houston Miller, RN, BSN, FAHA; Van S. Hubbard, MD, PhD*; I-Min Lee, MD, ScD; Alice H. Lichtenstein, DSc, FAHA; Catherine M. Loria, PhD, FAHA*; Barbara E. Millen, DrPH, RD, FADA; Cathy A. Nonas, MS, RD; Frank M. Sacks, MD, FAHA; Sidney C. Smith, Jr, MD, FACC, FAHA; Laura P. Svetkey, MD, MHS; Thomas A. Wadden, PhD; Susan Z. Yanovski, MD*

METHODOLOGY MEMBERS
Karima A. Kendall, PhD; Laura C. Morgan, MA; Michael G. Trisolini, PhD, MBA; George Velasco; Janusz Wnek, PhD
ACC/AHA TASK FORCE MEMBERS

Jeffrey L. Anderson, MD, FACC, FAHA, Chair; Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect; Nancy M. Albert, PhD, CCNS, CCRN, FAHA; Biykem Bozkurt, MD, PhD, FACC, FAHA; Ralph G. Brindis, MD, MPH, MACC; Lesley H. Curtis, PhD, FAHA; David DeMets, PhD; Judith S. Hochman, MD, FACC, FAHA; Richard J. Kovacs, MD, FACC, FAHA; E. Magnus Ohman, MD, FACC; Susan J. Pressler, PhD, RN, FAAN, FAHA; Frank W. Sellke, MD, FACC, FAHA; Win-Kuang Shen, MD, FACC, FAHA

SUBCOMMITTEE ON PREVENTION GUIDELINES
Sidney C. Smith, Jr, MD, FACC, FAHA, Chair; Gordon F. Tomaselli, MD, FACC, FAHA, Co-Chair

ACC/AHA Prevention Guideline

OPEN

2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk

A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines

Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation, American Society for Preventive Cardiology, American Society of Hypertension, Association of Black Cardiologists, National Lipid Association, Preventive Cardiovascular Nurses Association, and WomenHeart: The National Coalition for Women With Heart Disease

EXPERT WORK GROUP MEMBERS

David C. Goff, Jr, MD, PhD, FACP, FAHA, Co-Chair;
Donald M. Lloyd-Jones, MD, ScM, FACC, FAHA, Co-Chair; Glen Bennett, MPH*; Sean Coady, MS*; Ralph B. D'Agostino, Sr, PhD, FAHA; Raymond Gibbons, MD, FACC, FAHA Philip Greenland, MD, FACC, FAHA; Daniel T. Lackland, DrPH, FAHA; Daniel Levy, MD*: Christopher J. O'Donnell, MD, MPH*; Jennifer G. Robinson, MD, MPH, FAHA;
J. Sanford Schwartz, MD; Susan T. Shero, MS, RN*; Sidney C. Smith, Jr, MD, FACC, FAHA; Paul Sorlie, PhD*; Neil J. Stone, MD, FACC, FAHA; Peter W. F. Wilson, MD, FAHA

METHODOLOGY MEMBERS
Harmon S. Jordan, ScD; Lev Nevo, MD; Janusz Wnek, PhD
ACC/AHA TASK FORCE MEMBERS
Jeffrey L. Anderson, MD, FACC, FAHA, Chair; Jonathan L. Halperin, MD, FACC, FAHA, Chair-Elect Nancy M. Albert, PhD, CCNS, CCRN, FAHA; Biykem Bozkurt, MD, PhD, FACC, FAHA;
Ralph G. Brindis, MD, MPH, MACC; Lesley H. Curtis, PhD, FAHA; David DeMets, PhD; Judith S. Hochman, MD, FACC, FAHA; Richard J. Kovacs, MD, FACC, FAHA;
E. Magnus Ohman, MD, FACC; Susan J. Pressler, PhD, RN, FAAN, FAHA;

Frank W. Sellke, MD, FACC, FAHA; Win-Kuang Shen, MD, FACC, FAHA
SUBCOMMITTEE ON PREVENTION GUIDELINES
Sidney C. Smith, Jr, MD, FACC, FAHA, Chair; Gordon F. Tomaselli, MD, FACC, FAHA, Co-Chair

Prevention Guidelines

American
Heart Association.

AMERICAN COLLEGE of CARDIOLOGY

2013 Prevention Guidelines Tools

 CV RISK CALCULATOR[^0]The American Heart Association and the American College of Cardiology are excited to provide a series of new cardiovascular prevention guidelines for the assessment of cardiovascular risk, lifestyle modifications that reduce risk, management of elevated blood cholesterol, and management of increased body weight in adults. To support the implementation of these guidelines, the new Pooled Cohort Equations CV Risk Calculator and additional Prevention Guideline Tools are available below. Others may be developed and available in the near future.

LIFE'S SIMPLE 7

life is why ${ }^{\circ}$

What can we do to get active?

Stop Smoking

Eat Better

Get Active

Lose Weight

Manage Blood Pressure

Control Cholesterol

Reduce Blood Sugar

Start with these 3 steps.

About Life's Simple 7

Manage Blood Pressure

High blood pressure is a major risk factor for heart disease and stroke. When your blood pressure stays within healthy ranges, you reduce the strain on your heart, arteries, and kidneys which keeps you healthier longer.

```
Learn how to manage your blood pressure.
```


Control Cholesterol

High cholesterol contributes to plaque, which can clog arteries and lead to heart disease and stroke. When you control your cholesterol, you are giving your arteries their best chance to remain clear of blockages.
Learn how to control your cholesterol.

Reduce Blood Sugar

Most of the food we eat is turned into glucose (or blood sugar) that our bodies use for energy. Over time, high levels of blood sugar can damage your heart, kidneys, eyes and nerves. Learn how to reduce your blood sugar.

Get Active

Living an active life is one of the most rewarding gifts you can give yourself and those you love. Simply put, daily physical activity increases your length and quality of life.
Learn how to get active.
Eat Better A healthy diet is one of your best weapons for fighting cardiovascular disease. When you eat a heart-healthy diet, you improve your chances for feeling good and staying healthy - for life!

Learn how to eat better.

Lose Weight

When you shed extra fat and unnecessary pounds, you reduce the burden on your heart, lungs, blood vessels and skeleton. You give yourself the gift of active living, you lower your blood pressure and you help yourself feel better, too.
Learn how to lose weight.

Stop Smoking

Cigarette smokers have a higher risk of developing cardiovascular disease. If you smoke, quitting is the best thing you can do for your health.
Learn how to stop smoking.

2016 European Guidelines on cardiovascular disease prevention in clinical practice

The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)

Developed with the special contribution of the European Association for Cardiovascular Prevention \& Rehabilitation (EACPR)
Authors/Task Force Members: Massimo F. Piepoli* (Chairperson) (Italy), Arno W. Hoes* (Co-Chairperson) (The Netherlands), Stefan Agewall (Norway) ${ }^{1}$, Christian Albus (Germany) ${ }^{9}$, Carlos Brotons (Spain) ${ }^{10}$, Alberico L. Catapano (Italy) ${ }^{3}$, Marie-Therese Cooney (Ireland) ${ }^{1}$, Ugo Corrà (Italy) ${ }^{1}$, Bernard Cosyns (Belgium) ${ }^{1}$, Christi Deaton (UK) ${ }^{1}$, Ian Graham (Ireland) ${ }^{1}$, Michael Stephen Hall (UK) ${ }^{7}$, F. D. Richard Hobbs (UK) ${ }^{10}$, Maja-Lisa Løchen (Norway) ${ }^{1}$, Herbert Löllgen (Germany) ${ }^{8}$, Pedro Marques-Vidal (Switzerland) ${ }^{1}$, Jep Perk (Sweden) ${ }^{1}$, Eva Prescott (Denmark) ${ }^{1}$, Josep Redon (Spain) ${ }^{5}$, Dimitrios J Richter (Greece) ${ }^{1}$, Naveed Sattar (UK) ${ }^{2}$, Yvo Smulders (The Netherlands) ${ }^{1}$, Monica Tiberi (Italy) ${ }^{1}$,
H. Bart van der Worp (The Netherlands) ${ }^{6}$, Ineke van Dis (The Netherlands) ${ }^{4}$, W. M. Monique Verschuren (The Netherlands) ${ }^{1}$

Additional Contributor: Simone Binno (Italy)

They defined CVD

 prevention as a coordinated set of actions, at the population level or targeted at an individual, that are aimed at eliminating or minimizing the impact of CVDs and their related disabilities. CVD remains a leading cause of morbidity and mortality, despite improvements in outcomes.
CVD Risk Prevention

From ESC 2016 CV prevention guidelines

SCORE chart: 10-year risk of fatal cardiovascular disease in populations of countries at high cardiovascular risk based on the following risk factors: age, sex, smoking, systolic blood pressure, total cholesterol.
CVD = cardiovascular disease; SCORE = Systematic Coronary Risk Estimation.

Piepoli et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Europ Heart J.

Figure 4 SCORE chart (for use in high-risk European countries) illustrating how the approximate risk age can be read off the chart. SCORE $=$ Systematic Coronary Risk Estimation.

Piepoli et al. 2016 European Guidelines on cardiovascular disease prevention in clinical practice. Europ Heart J.

Cholesterol (mmol/L)

So how are individual countries doing?

Switzerland?

Noncommunicable Diseases
Country Profiles 2014

Brazil

nceme Group: Upper middle

Percentage of population living in urban areas: 84.6\% Population proportion between ages 30 and 70 years: 45.0%
Age-standardized death rates Proportional mortality (\% of total deaths, all ages, both sexes)

Premature mortality due to NCDs
The probability of dying between ages $\mathbf{3 0}$ and $\mathbf{7 0}$ years from the $\mathbf{4}$ main NCDs is $\mathbf{1 9 \%}$.

Adult risk factors		
	males	females
Current tobacco smoking (2011)	22%	13%
Total alcohol per capita consumption, in litres of pure alcohol (2010)	13.6	4.2
Raised blood pressure (2008)	36.8%	25.3%
Obesity (2008)	16.0%	30.7
National systems response to NCDs	21.4%	18.8%
Has an operational NCD unitbranch or department within the Ministry of Health, or equivalent		
Has an operational multisectoral national policy, strategy or action plan that integrates several NCDs and shared risk factors	Yes	
Has an operational policy, strategy or action plan to reduce the harmful use of alcohol	No	
Has an operational policy, strategy or action plan to reduce physical inactivity and/or promote physical activity	No	
Has an operational policy, strategy or action plan to reduce the burden of tobacco use	Yes	
Has an operational policy, strategy or action plan to reduce unhealthy diet and/or promote healthy diets	Yes	
Has evidence-based national guidelines/protocols/standards for the management of major NCDs through a primary care approach	Yes	
Has an NCD surveillance and monitoring system in place to enable reporting against the nine global NCD targets	Yes	
Has a national, population-based cancer registry	No	No

Brazil

Total population: 199000000 Income Group: Upper middle

Age-standardized death rates

Percentage of population living in urban areas: 84.6\%
Population proportion between ages 30 and 70 years: 45.0%

Proportional mortality (\% of total deaths, all ages, both sexes)

Total deaths: 1,318,000
NCDs are estimated to account for 74% of total deaths.

Premature mortality due to NCDs

The probability of dying between ages 30 and 70 years from the 4 main NCDs is 19%.

Adult risk factors

Current tobacco smoking (2011)
Total alcohol per capita consumption, in litres of pure alcohol (2010)
Raised blood pressure (2008)
Obesity (2008)

males	females	total
22%	13%	17%
13.6	4.2	8.7
36.8%	25.3%	30.8%
16.0%	21.4%	18.8%

Venezuela (Bolivarian Republic of)

Argentina

The probability of dying between ages 30 and 70 years from the 4 main NCDs is 17%.

Mexico

Total population: 121000000

income Group: Upper middle

Age-standardized death rates

Percentage of population living in urban areas: 78.1\% Population proportion between ages 30 and 70 years: 40.5\% Proportional mortality (\% of total deaths, all ages, both sexes)

Total deaths: 605,000 NCDs are estimated to account for 77% of total deaths.

Premature mortality due to NCDs
The probability of dying between ages 30 and 70 years from the 4 main NCDs is 16%.

Nicaragua

Total population: 5992000 Income Group: Lower middle
Age-standardized death rates*

Percentage of population living in urban areas: 57.5% Population proportion between ages 30 and 70 years: 33.3% Proportional mortality (\% of total deaths, all ages, both sexes)*

Total deaths: 29,000
NCDs are estimated to account for 73% of total deaths.

Premature mortality due to NCDs^{*}
The probability of dying between ages 30 and 70 years from the 4 main NCDs is 19%.

United States of America

Total population: 318000000
Income Group: High

Percentage of population living in urban areas: 82.4% Population proportion between ages 30 and 70 years: 50.3\%
Proportional mortality (\% of total deaths, all ages, both sexes)
 NCDs are estimated to account for 88% of total deaths. Premature mortality due to NCDs

The probability of dying between ages 30 and 70 years from the 4 main NCDs is 14%.

Switzerland

Total population: 7997000
Income Group: High
Age-standardized death rates

Percentage of population living in urban areas: 73.7\% Population proportion between ages 30 and 70 years: 54.5%
Proportional mortality (\% of total deaths, all ages, both sexes)

Premature mortality due to NCDs
The probability of dying between ages 30 and 70 years from the 4 main NCDs is 9%.

China

The probability of dying between ages 30 and 70 years from the 4 main NCDs is 19%.

Adult risk factors			
	males	females	total
Current tobacco smoking (2011)	47%	2%	25%
Total alcohol per capita consumption, in litres of pure alcohol (2010)	10.9	2.2	6.7
Raised blood pressure (2008)	29.0%	25.5%	27.3%
Obesity (2008)	4.7%	6.7%	5.7%

Russian Federation

The probability of dying between ages 30 and 70 years from the 4 main NCDs is 30%.

Adult risk factors

	males	females	total
Current tobacco smoking (2011)	59%	25%	40%
Total alcohol per capita consumption, in litres of pure alcohol (2010)	23.9	7.8	15.1
Raised blood pressure (2008)	37.5%	38.1%	37.8%
Obesity (2008)	18.6%	32.9%	26.5%

Burundi

Premature mortality due to NCDs*
The probability of dying between ages 30 and 70 years from the 4 main NCDs is 24%.

Mozambique

Total population: 25203000

 Income Group: Low

Percentage of population living in urban areas: 31.2% Population proportion between ages 30 and 70 years: 25.8%
Proportional mortality $(\%$ of total deaths, all ages, both sexess)"

Premature mortality due to NCDs^{*}
The probability of dying between ages 30 and 70 years from the 4 main NCDs is 17%.

Circulation

AHA/WHF Scientific Statement

The Heart of 25 by 25: Achieving the Goal of Reducing Global and Regional Premature Deaths From Cardiovascular Diseases and Stroke A Modeling Study From the American Heart Association and World Heart Federation

Ralph L. Sacco, MD, MS, FAHA; Gregory A. Roth, MD, MPH; K. Srinath Reddy, MD, DM; Donna K. Arnett, PhD, MSPH, FAHA; Ruth Bonita, PhD; Thomas A. Gaziano, MD; Paul A. Heidenreich, MD, MS, FAHA; Mark D. Huffman, MD, MPH, FAHA; Bongani M. Mayosi, MBChB, DPhil; Shanthi Mendis, MD; Christopher J.L. Murray, MD, DPhil; Pablo Perel, MD, MSc, PhD; Daniel J. Piñeiro, MD, FAHA; Sidney C. Smith, Jr, MD, FAHA; Kathryn A. Taubert, PhD, FAHA; David A. Wood, MSc; Dong Zhao, MD, PhD; William A. Zoghbi, MD, FAHA

Abstract-In 2011, the United Nations set key targets to reach by 2025 to reduce the risk of premature noncommunicable disease death by 25% by 2025 . With cardiovascular disease being the largest contributor to global mortality, accounting for nearly half of the 36 million annual noncommunicable disease deaths, achieving the 2025 goal requires that cardiovascular disease and its risk factors be aggressively addressed. The Global Cardiovascular Disease Taskforce, comprising the World Heart Federation, American Heart Association, American College of Cardiology Foundation, European Heart Network, and European Society of Cardiology, with expanded representation from Asia, Africa, and Latin America, along with global cardiovascular disease experts, disseminates information and approaches to reach the United Nations 2025 targets. The writing committee, which reffects Global Cardiovascular Disease Taskforce membership, engaged the Institute for Health Metrics and Evaluation, University of Washington, to develop region-snecific octimatac of nremature cardiovascular mortality in 2025
 are projected worldwi oy 2025 , which can be reduced to 3.5 million and 2.2 million, respectively, if risk factor targets for blood pressure, tobacu use, diabetes mellitus, and obesity are achieved. However, global risk factor targets have various

 plasma glucose. However, preventing increases in body mass index has the largest effect in some high-income countries. An approach achieving reductions in multiple risk factors has the largest impact for almost all regions. Achieving these goals can be accomplished only if countries set priorities, implement cost-effective population wide strategies, and collaborate in publicprivate partnerships across multiple sectors. (Circulation. 2016;133:e674-e690. DOI: 10.1161/CIR.0000000000000395.)

Results showed that management of risk factors can indeed reduce premature mortality.

\qquad
\qquad
\qquad

d
\qquad
 use g

(see next slide)

(From Sacco, et al)
based on various scenarios. Results show that >5 million premature CVD deaths among men and 2.8 million among women are projected worldwide by 2025 , which can be reduced to 3.5 million and 2.2 million, respectively, if risk factor targets for blood pressure, tobacco use, diabetes mellitus, and obesity are achieved. However, global risk factor targets have various effects, depending on region. For most regions, United Nations targets for reducing systolic blood pressure and tobacco use have more substantial effects on future scenarios compared with maintaining current levels of body mass index and fasting plasma glucose. However, preventing increases in body mass index has the largest effect in some high-income countries. An

> Population attributable risk

This...

Not this...

This...

Not this...

This...

Not

this

In spite of everything, some patients will be hospitalized. As shown earlier by Dr. Smith, QI programs can be very helpful.

Population Level Impact:

Declines in AMI, HF, and Ischemic Stroke Mortality
30-Day Mortality Rates for AMI, HF, and Ischemic Stroke Medicare Fee-for-Service Beneficiaries: 1999-2011

| | AMI | | Heart Failure |
| :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Ischemic

Stroke\end{array}\right]\)

So in conclusion,

American
 Heart Stroke

Association Association.
life is why"

Thank you! Obrigado!!

Women aren't just men in lipstick!!

R Risk of heart disease and stroke in women often underestimated due to the mistaken notion that females are protected from CVD.

P There can be some differences in clinical presentation of CVD in women leading to inadequate diagnosis and delayed referral, hospitalization or treatment.

P Better self-awareness in women regarding their CV risk factors and symptoms can improve early detection.

The Three Paradoxes

- Women have a higher prevalence of angina compared to men, yet have an overall lower prevalence of atherosclerosis and obstructive coronary artery disease.
Symptomatic women undergoing coronary angiography have less extensive and severe CAD, despite being older with a greater risk factor burden, compared to men.
Despite relatively less CAD, women have a more adverse prognosis compared to men.

From: Bairey Merz, C. N. Women and Ischemic Heart Disease. JACC: Cardiovascular Imaging Vol 4, No 1, 2011.

[^0]: This downloadable spreadsheet is a companion tool to the 2013 ACC/AHA Guideline on

